Gaussian Beam Methods for the Helmholtz Equation

نویسندگان

  • Hailiang Liu
  • James Ralston
  • Olof Runborg
  • Nicolay M. Tanushev
چکیده

In this work we construct Gaussian beam approximations to solutions of the high frequency Helmholtz equation with a localized source. Under the assumption of non-trapping rays we show error estimates between the exact outgoing solution and Gaussian beams in terms of the wave number k, both for single beams and superposition of beams. The main result is that the relative local L2 error in the beam approximations decay as k−N/2 independent of dimension and presence of caustics, for N -th order beams.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable Gaussian radial basis function method for solving Helmholtz equations

‎Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems‎. ‎They are often referred to as a meshfree method and can be spectrally accurate‎. ‎In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion‎. ‎We develop our approach in two-dimensional spaces for so...

متن کامل

Gaussian Beam Approach for the Boundary Value Problem of High Frequency Helmholtz Equation

Abstract. We propose an asymptotic numerical method called the Gaussian beam approach for the boundary value problem of high frequency Helmholtz equation. The basic idea is to approximate the traveling waves with a summation of Gaussian beams by the least squares algorithm. Gaussian beams are asymptotic solutions of linear wave equations in the high frequency regime. We deduce the ODE systems s...

متن کامل

Exact nonparaxial beams of the scalar Helmholtz equation.

It is shown that three-dimensional nonparaxial beams are described by the oblate spheroidal exact solutions of the Helmholtz equation. For what is believed to be the first time, their beam behavior is investigated and their corresponding parameters are defined. Using the fact that the beam width of the family of paraxial Gaussian beams is described by a hyperbola, we formally establish the conn...

متن کامل

The Gaussian Beam Summation and the Gaussian Launching Methods in Scattering Problem

This paper is mainly devoted to application of the Gaussian beam summation technique in electromagnetic simulations problem. Gaussian beams are asymptotic solutions of the Helmholtz equation within the paraxial approximation. Since they are insensitive to ray transition region, several techniques based on Gaussian beam are used to evaluate high frequency EM wave equation, which overcome partial...

متن کامل

Gaussian amplitude functions that are exact solutions to the scalar Helmholtz equation

A new family of exact solutions of the scalar Helmholtz equation is presented. The 0, 0 order of this family represents a new mathematical model for the fundamental mode of a propagating Gaussian beam. The family consists of nonseparable functions in the oblate spheroidal coordinate system and can easily by transformed into a different set of solutions in the prolate spheroidal coordinate syste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Journal of Applied Mathematics

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2014